National Repository of Grey Literature 33 records found  1 - 10nextend  jump to record: Search took 0.01 seconds. 
Utilizazion possibilities of bricks grinding waste in alkali activated systems
Dzurov, Matej ; Kalina, Lukáš (referee) ; Šoukal, František (advisor)
The bachelor’s thesis deals with usage of brick grinding waste, arising from the grinding process of modern bricks, as a constituent of alkali activated binders. The aim of the thesis is to verify the properties of brick grinding waste and to test mechanical properties of mixtures with different proportions of brick grinding waste and ground-granulated blast furnace slag, activated by commonly available hydroxides and combinations of hydroxides and water glasses. Furthermore, the effects of temperature increase on properties of prepared test samples were investigated and formation of carbonate effluent was observed.
Development of shrinkage reducing admixtures designed for alkali activated materials
Šístková, Pavlína ; Bílek, Vlastimil (referee) ; Kalina, Lukáš (advisor)
This thesis deals with development of shrinkage reducing admixtures designed for alkali activated materials based on blast furnace slag. The main task of this work is to select the most suitable shrinkage reducing admixture based on experiments, in which can be observed minimal shrinkage and at the same time it will not adversely affect the properties of alkali activated blast furnace slag. In the experimental part of the work, test beams containing shrinkage reducing admixtures were prepared, in which the shrinkage and loss of weight were measured. Moreover, the mechanical properties of individual beams, such as tensile strength and compressive strength, were measured. Next, the surface tension of individual shrinkage reducing admixtures was measured in a mixture with pore solution. The hydration process of alkali activated materials under the action of reducing shrinkage admixtures was monitored by calorimetric analysis. The microstructure of the prepared samples was observed by scanning electron microscopy.
Fixation of the lead in alkali activated materials based on different types of ashes
Cába, Vladislav ; Kalina, Lukáš (referee) ; Koplík, Jan (advisor)
The aim of this work was to develop an alkali activated matrix based mainly on fly ash, to determine the ability to fix lead in these matrices, the impact of added lead on mechanical properties and to reveal the way of lead fixation in these matrices. The matrices consisted mainly of fly ash (four from fluidized bed combustion, one pulverized coal combustion) with an admixture of blast furnace slag and sodium silicate as an activator. Lechates were prepared on the basis of the ČSN EN - 12457-4 standard, lead concentrations in them were measured using an atomic emission spectrometer with inductively coupled plasma. The strengths of the samples were measured after 28 days. Images, element maps and element spectra were taken to determine the structure using a scanning electron microscope with an electron dispersion spectrometer, the samples were analyzed on an infrared spectrometer with a Furier transform, X-ray diffraction analysis and electron spectroscopy for chemical analysis were also used. The individual measurements showed that lead is accumulated in the form of hydroxide. The impact of lead doping on strength of the matrix was different for individual samples. Matrices from both types of fly ash released minimal amounts of lead into leachates, so it is possible to use them to fixate lead.
Effect of plasticizers on the behaviour and properties of alkali activated materials
Langová, Markéta ; Koplík, Jan (referee) ; Kalina, Lukáš (advisor)
Alkali activated materials could be suitable alternative to construction materials based on ordinary Portland cement (OPC). Therefore, it is advisable to pursue these binders further on. Aim of this thesis is to clarify the effect of lignosulfonate-based plasticizer and polycarboxylate-based superplasticizer on the behaviour and nature of alkali activated materials. For the purposes of studying the efficiency of plasticizing additives, the change of workability of alkali activated blast furnace slag in dependence on time, effect of additives on mechanical properties as well as, with usage of isothermal calorimetry, their impact on kinetics of solidification and hardening had been observed. The stability of the plasticizing admixtures in a high alkaline environment such as water glass and sodium hydroxide had been studied using infrared spectrometry. As a last step, X-ray photoelectron spectroscopy (XPS) had been used while clarifying the chemical changes in the structure of plasticizing additives after adsorption to blast furnace slag.
Durability of alkali-activated systems
Šafář, Martin ; Šoukal, František (referee) ; Kalina, Lukáš (advisor)
Alkali activated binders have the potential to become an alternative construction material to ordinary portland cement binders. This thesis concentrates on durability testing of alkali activated blast furnace slag and fly ash based concrete. The chosen aspects of durability included sulfate resistance, acid resistance, carbonation, freeze-thaw resistance, frost-salt resistance and porosity. Microstructural changes and formation of new crystalline phases were observed using XRD and SEM-EDX analysis. Potential application of the tested material from the durability point of view was evaluated by comparison with a reference ordinary portland cement based concrete.
Influence of inorganic admixtures on shrinkage reduction of alkali activated materials
Šístková, Pavlína ; Koplík, Jan (referee) ; Kalina, Lukáš (advisor)
This bachelor thesis is focused on the influence of inorganic admixtures on shrinkage reduction of alkali activated materials. In the theoretical part the issue of alkali activated materials is explained in detail focusing on the reduction of their shrinkage. Alkali activated system is constituted by alkali activated blast furnace slag. Firstly, the effect of inorganic dashes is monitored such as low calcium fly ash and finely ground limestone. Furthermore, the influence of inorganic additives for reducing shrinkage has been studied, namely magnesium oxide and calcium oxide. The aim of this work is to determinate the mechanical properties and shrinkage of individual alkali activated mixture and then discuss whether there was a reduction of shrinkage and what the effect of added dashes and inorganic admixtures was.
Effect of the composition of alkaline activator on the properties of hybrid cements
Šimko, Lukáš ; Vyšvařil, Martin (referee) ; Rovnaník, Pavel (advisor)
Building industry, especially production of Portland cement is the most ecologically and energetically demanding sector. Therefore, there is an effort of using waste products of energy industry as a (partial) substitution of conventional building materials. This bachelor thesis deals with the possibility of using the power station fly ash as a major part of mixtures with Portland cement, and therefore as a hybrid cement. In the experimental part, the influence of silicate module on the characteristics of mortars, whose binder is composed of 20% of Portland cement and 80% of fly ash from Dětmarovice power station, is examined. It further deals with influence of composition of alkaline activator on its characteristics. Its properties are examined in terms of porosity, strength and microstructure. Size and distribution of pores are examined by means of mercury intrusion porosimetry and evaluation of microstructure is based on scanning electron microscopy.
Possibilities of application of fluidized bed combustion solid residues from municipal waste
Melicher, Daniel ; Solný, Tomáš (referee) ; Opravil, Tomáš (advisor)
The bachelor thesis deals with the use of solid residues from incineration waste products, especially in the construction industry. The aim of the thesis is to test various modifications of solid residues from incineration waste. These secondary materials were tested in bonding systems based on hydratation of portland cement, gypsum made from chemogypsum, quicklime and alkali-activated systems. The aim was to verify whether solid residues from waste incineration could be used as a component of alternative materials for the construction industry.
Utilization of basalt fibers in alkali activated materials
Hrubý, Petr ; Šoukal, František (referee) ; Kalina, Lukáš (advisor)
Alkali activated materials (AAMs) represent construction materials with a huge potential especially because of environmental and economic aspects but sufficient mechanical properties as well. A fibre or fabric reinforcement of the AAMs could support more widespread application potential due to the mechanical properties, fracture toughness or composite durability improvement. Various alkaline activators were used for a blast furnace slag (BFS) activation to produce a suitable matrix for basalt fibres (BF) implementation in this thesis. The BFs represent applicable reinforcing material because of its favourable mechanical and thermal properties. Still, the utilization of BFs in the AAMs is quite limited due to the fibres low chemical stability under the alkaline conditions. Accelerated leaching tests with a determination of basalt fibres chemical composition same as tensile strength change using various analytical techniques (XRD, XPS, SEM-EDX, ICP-OES) have confirmed these assumptions. An influence of basalt fabric reinforcement in one or more layers on the mechanical properties was determined with the meaning of the compressive and flexural strengths. The fibre/matrix adhesion and transition zone properties were studied using SEM-EDX and pull-out tests as well because they are crucial parameters for the composite material reinforcement efficiency.
The development of composites based on alkali-activated matrices resistant to extreme temperatures
Ševčík, Marek ; Šácha, Libor (referee) ; Dufka, Amos (advisor)
The diploma thesis is focused on the development of composites from alkali activated materials (AAM) and their resistance to extreme temperatures. The theoretical part describes alkaline activation and precursors for the production of AAM. Furthermore, the problem of the effect of extreme temperatures on these materials is described. In the experimental part, the optimal silicate modulus with respect to the properties of AAM was gradually determined, and the effect of extreme temperatures on the AAM matrix was verified. In the next stage, the effect of the filler with respect to the behavior at extreme temperatures was tested and then the final formulation was optimized.

National Repository of Grey Literature : 33 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.